METALLIC COMPLIANT STRUCTURES based on **ADDITIVE MANUFACTURING (AM)**

Research and technology organization – CH Neuchâtel <u>Hervé Saudan</u>, L. Kiener, K. Vaideeswaran, M. Dadras

Manufacturing of metal parts – CH Delémont Dominique Beuchat, founder and CEO

19th AM Platform meeting General assembly June 14th 2017

Presentation outline

- Why developing compliant structures based on AM? 1.
- 2. How to tackle this challenge?
- What are the most critical aspects? 3.
- What results were obtained? 4.

C I

5. What to conclude?

Why developing compliant mechanisms based on AM?

Main drawbacks of CMs

• Limited stroke

• Susceptibility to vibrations/shocks

- WEDM process
 - design forced to pseudo 3D shapes
 - monolithic approach not straightforward

pictures source: http://www.engineersedge.com

Copyright 2017 CSEM | EUSPEN 2017 | AM-Based compliant structures | <u>H. Saudan</u>, L. Kiener, K. Vaideeswaran, M. Dadras | Page 2

What can we hope from CMs based on AM?

- Increased design freedom
 - Novel kinematic topologies

- Optimized mass/stiffness
 - Improved performances

C D

3D PRECISION SA

• Monolithic designs

Reduced complexity, better reliability

schematic pictures source: Wikimedia

How to tackle this challenge?

What are the most critical aspects?

- Identify the best alloy for application(s) foreseen
 - > 17-4PH stainless steel equivalent

- Determine SLM parameters adapted to:
 - **Structure** segments in the <u>centimeter range</u>
 - Flexure segments thinner than 0.35 mm

• Determine post-process (thermal, mechanical)

Lessons learned during feasibility

- SLM process induces thermal stress
 - Manufacture on a stiff substrate
 - Perform Stress relief annealing
- > SLM parameters highly critical

3D PRECISION SA

:: CSEM

Lessons learned during feasibility

Laser pattern strategy = main success maker

CSem

- Laser focus + power + scan speed also precisely tuned
- ➢ Residual porosity → requires HIPing post process

HIP post processing results

Manuf. direction X

✓ Residual porosity removed

✓ Improved micro-structure

 Warpage observed on larger samples (plates)

Tensile tests results

CSem

TENSILE TESTS RESULTS			17-4PH Böhler	CL92PH X-Y-Z mean values ±1σ	
Material heat condition - Solution Annealed (SA) - Age Hardened (AH)			SA / AH	NO HIP	HIP
UTS	Rm	N/mm ²	1170	1412±32	1415±18
Yield strength	Rp0.2	N/mm ²	1070	1034±43	1335±21
Elongation	A ₅	%	8	3.1	9

3D PRECISION SA

Additively Manufactured Metallic Compliant Structures

Fatigue test results – S-N curves estimates

CSem

Copyright 2017 CSEM | EUSPEN 2017 | AM-Based compliant structures | H. Saudan, L. Kiener, K. Vaideeswaran, M. Dadras | Page 10

What to conclude?

- Feasibility successfully proven
- Material performances validated, ok for most applications
- SLM-induced thermal stress to be addressed
- HIP treatment improves material performances
- HIP induce warpage for "large" parts
- Study to be continued (accuracy, cases, ...)

THANK YOU FOR YOUR ATTENTION

